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Abstract

To what extent can judges deter pretrial misconduct without detention? This question is becoming
increasingly salient as jurisdictions across the United States enact bail reforms that make most people
ineligible for monetary bail and pretrial detention. In this paper, I develop new econometric methods to
learn about the deterrence effects of New York City’s supervised release program, a de facto substitute
for monetary bail following bail reform in New York State. I focus on identifying and estimating a
simple causal parameter: on average, how much does supervised release increase the court appearance
rate of individuals with a given set of characteristics? I propose a parsimonious model of judge
behavior that places intuitive restrictions on this parameter while allowing judges to have arbitrary
private information. I demonstrate that under certain conditions, these restrictions still hold even if
judges make decisions that are noisy, or based on inaccurate beliefs. Finally, I present preliminary
empirical results indicating that, on average, pretrial supervision increases court appearance rates by
at least 2.9% but no more than 9.9% among the individuals in my sample.



1 Introduction

When judges set bail conditions, they face a dual mandate: maintaining defendants’ liberty while ensuring
their subsequent appearance in court. Nevertheless, at any given time there are around half a million
pretrial detainees in jails across the United States (BJS, 2023). Most of these people are in jail because
they have not paid the amount of monetary bail required to secure their release (CCR, 2022). To reduce
the rate of pretrial detention, several states including California, New Mexico, Nebraska, Illinois, Indiana,
Kentucky, New Jersey, and New York have enacted bail reforms that severely limit, or even eliminate,
judges’ discretion to set monetary bail. As a result, judges’ ability to satisfy their dual mandate hinges on
the extent to which they can deter defendants from failing to appear in court without detaining them.

I study the deterrence effects of New York City’s supervised release (SR) program, a non-monetary
condition that has seen widespread use following New York State’s 2020 bail reform. As discussed
in greater detail in Section 2.1, program enrollees must regularly check in with a social worker and
receive court date reminders via phone or text. There are several features of this empirical context that
make it particularly well-suited for studying deterrence effects. First, according to New York State law,
judges must only consider failure to appear risk (rather than, say, public safety risk) when making bail
decisions. So, the SR program was specifically designed to increase court appearance rates, rather than to
decrease recidivism rates more generally. Second, New York State’s 2020 bail reform made the majority
of defendants ineligible for monetary bail and pretrial detention; judges must effectively decide whether
to release these defendants under no conditions or release them under supervision. Eliminating the
outside option of detention prevents deterrence effects from being confounded by selection into release,
a significant challenge faced by other papers in this literature (Albright, 2022; Rivera, 2023). Third,
New York City’s SR program is one of the largest and most well-established programs of its kind in the
country, acting as a model for similar programs in other states (Mayor’s Office of Criminal Justice, 2024).
Developing a better understanding of its strengths and weaknesses could help inform bail reform efforts
nationwide.

Identifying deterrence effects from observational data requires overcoming the problem of selection:
judges will only assign SR to those who they believe are most suitable for the program. The "judge
design" represents a canonical solution to this problem in which the researcher runs Two-Stage Least
Squares (TSLS) using quasi-random judge assignment as an instrument for supervision (Leslie and Pope,
2017; Dobbie et al., 2018).1 Unfortunately, it is difficult to justify the usual assumptions from Imbens and
Angrist (1994) under which the resulting estimand represents a local average treatment effect. In particular,
monotonicity requires all judges to act as if they agree on how defendants should be ranked in terms of
their suitability for supervision; in the language of Vytlacil (2002), they must share a common latent
index. By ruling out variation in skill across judges, the standard judge design attributes any differences
in judge behavior to variation in preferences. In an influential paper, Chan et al. (2022) show that this
approach can produce highly misleading results when differences in judge behavior do in fact arise from
variation in skill. In Section 3, I present evidence that the concerns raised by Chan et al. (2022) appear
to be relevant in my empirical context: canonical TSLS estimates suggest that supervision substantially
reduces compliers’ court appearance rate, a conclusion that is hard to square with institutional details of
the NYC pretrial system. Given that there is no sound theoretical or empirical justification for assuming

1Most papers in this literature consider pretrial detention, rather than supervision, as the treatment of interest.
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that all NYC judges have the same level of skill, plausible identification of deterrence effects requires new
econometric techniques that do not rely on monotonicity.

In the current draft, I focus on identifying conditional average treatment effects (CATEs) of SR on
court appearance relative to release under no conditions. Conditioning on observable defendant and
court characteristics allows me to concentrate on the fundamental identification challenge: judges may
assign supervision based on private information that is both unobserved by the econometrician and
heterogeneous across judges. In Section 4.1, I propose a simple behavioral model in which judges trade
off the benefit of increased court appearance due to supervision against their perceived cost of supervision,
which may vary flexibly across observables but must not depend on unobservables. The importance of
ruling out arbitrary unobserved costs in models of treatment selection has been emphasized in the context
of detecting bias in judge decision making (Canay et al., 2023). I show that it is also necessary in order
to meaningfully restrict judge behavior when monotonicity does not hold. In particular, when judges
may have arbitrary and heterogeneous private information, the only restriction implied by my behavioral
model is positive selection on gains: for any given judge, the defendants she chooses to supervise must
have larger treatment effects, on average, than those she doesn’t. This restriction is not only useful for
tightening the sharp bounds on CATEs, but also robust to certain generalizations of my behavioral model
that allow for inaccurate beliefs and idiosyncratic unobserved costs.

This paper builds on a growing literature that has grappled with the question of what can be learned
from quasi-random judge assignment without invoking monotonicity. Frandsen et al. (2023) take a
reduced-form approach, arguing that Two-Stage Least Squares still recovers a positively weighted average
of treatment effects under a weaker "average monotonicity" condition. Unlike the usual monotonicity
condition, I am not aware of any equivalence result relating this condition to primitives of a structural
model of judge decision making (Vytlacil, 2002). It is difficult to know what restrictions this condition
places on the relationship between judge skill and judge preferences, and whether those restrictions are
reasonable. My proposed method places no such restrictions, extracting identifying power from any
variation in judge skill or judge preferences. Arnold et al. (2022) suggest a "model-free" approach that
involves extrapolating conditional average counterfactuals under SR (ROR) from judges who supervise
almost all (no) defendants with a given set of characteristics. Unfortunately, for many groups of defendants
there may not exist judges with both very high and very low supervision propensities. So, this method
will tend to rely heavily on statistical extrapolation which, by design, has little theoretical foundation. By
contrast, my proposed method may produce tight bounds on conditional average counterfactuals without
placing any requirements on the support of judges’ supervision propensities. Both Chan et al. (2022)
and Arnold et al. (2022) propose structural models that parameterize the distribution of judges’ private
information. Both papers adopt an empirical Bayes approach, further parameterizing a prior distribution
over judge skill and judge preferences. I demonstrate that it is possible to learn about CATEs without
making such strong parametric assumptions, which can be difficult to justify.

Finally, the work of Rambachan (2024) deserves special attention considering its similarity to the
current work: the author uses New York City pretrial bail data from before the 2020 bail reform and
allows judges to have arbitrary private information. However, he seeks to answer a fundamentally different
research question: under what conditions is it possible to establish that judges are making systematic
prediction mistakes? Like much of the existing economics literature on pretrial bail, Rambachan (2024)
models judges as deciding whether or not to detain defendants based on predictions of whether they would
fail to appear in court if released. To assess whether or not these predictions are based on inaccurate beliefs,
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the author must circumvent the fact that variation in beliefs may be indistinguishable from variation in
preferences under a sufficiently flexible behavioral model. He does this by assuming that preferences do
not vary across certain dimensions of defendant characteristics. I make no such assumption, since it is
not necessary to distinguish between variation in beliefs and preferences in order to learn about CATEs.
Indeed, this flexibility is precisely what makes my results robust to allowing for certain types of inaccurate
beliefs. This is particularly important given that Rambachan (2024) documents the existence of inaccurate
beliefs in a similar empirical context under the assumptions of his behavioral model.

2 Empirical Setting

2.1 Background on the NYC Pretrial System

Shortly after an individual is arrested in NYC, they appear before a judge at an arraignment hearing.
The judge decides what bail conditions the individual must abide by as they await their future court
dates. According to New York State law, these conditions must reflect "the kind and degree of control
or restriction necessary to reasonably assure the [individual]’s return to court" (New York State Senate,
2023a). To this end, the judge has four main categories of bail conditions at her disposal. First, she may
release the defendant under no conditions other than a promise to return to court: this is referred to as
release on recognizance (ROR). Second, she may release the defendant under non-monetary conditions,
such as mandatory enrollment in a supervised release program. Third, she may set an amount of monetary
bail that the defendant must pay in order to be released.2 Finally, she may detain the defendant outright,
ensuring their court appearance at the expense of their pretrial liberty.

Historically, NYC judges have had broad discretion to determine which type of bail condition is
appropriate for a given defendant. In practice, this meant that the vast majority of defendants were either
ROR or had monetary bail set. For example, in 2018 72% of defendants were ROR while 25% had
monetary bail set (DCJS, 2018). Among the latter group, 69% remained in pretrial detention at least 5 days
after arraignment as a consequence of not paying bail. This practical reality has lead several authors in the
economics literature on pretrial bail to consider monetary bail as a form of de facto detention (Kleinberg
et al., 2017; Arnold et al., 2022). According to this view, bail decisions are effectively decisions about
whether or not to detain a defendant.

As part of a wave of bail reform efforts across the US, New York State legislators passed the Bail
Elimination Act of 2019, restricting judges’ discretion to set bail conditions that may result in pretrial
detention. Effective January 1st 2020, only defendants charged with a qualifying offense were eligible for
monetary bail or outright detention; all other defendants must be ROR or released under non-monetary
conditions (New York State Senate, 2023b). Non-qualifying offenses include most misdemeanor and
non-violent felony charges, comprising roughly 73% of cases heard in 2022 (OCA, 2024). Defendants
charged with non-qualifying offenses represent the population of interest in this paper. Since these
defendants are ineligible for detention, they are ideally suited for studying the extent to which judges can
increase court appearance rates without detention. While in principle judges may still choose from a
variety of non-monetary conditions, in practice SR is by far the most commonly chosen bail condition
other than ROR.

2The court keeps this money as collateral: the defendant gets it back if they return to court, but not if they don’t. There are
several types of monetary bail available in New York City, including cash bail and insurance company bail bonds.
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Supervised release began in 2009 as a pilot program in Queens to connect defendants with social
services, keep them in regular contact with social workers, and remind them of their court dates. According
to the government office responsible for administering the program, "the purpose of SR is to help ensure a
person’s return to court, which is the primary criteria used by judges when making bail decisions under
New York State law" (Mayor’s Office of Criminal Justice, 2024). Once enrolled in SR, defendants receive
court date reminders via phone or text and are required to check in with a social worker between one and
four times per month, depending on the level of supervision. Social workers may connect defendants to
mental health and substance abuse treatments, or help them apply for public benefits and jobs. Importantly,
features of the SR program that may be tailored to a specific defendant, such as the level of supervision,
are determined by pretrial service agents, rather than judges. At the arraignment hearing, judges simply
decide whether or not to forward defendants to a pretrial service agent responsible for SR enrollment. As
of 2018, only 2% of defendants in NYC were assigned SR due to strict eligibility requirements (DCJS,
2018). However, following New York’s 2020 bail reform all defendants became eligible for SR, which
quickly became a de facto substitute for monetary bail in NYC. By 2022, 20% of defendants were assigned
SR, while only 10% had monetary bail set (OCA, 2024). The SR program’s rapid expansion has come at a
significant cost to taxpayers: between 2019 and 2022, the city spent $201 million on its SR contracts (Katz,
2023). This raises important policy questions: has the SR program achieved its objective of increasing
court appearance rates? If so, can it be better targeted towards those individuals for whom it is most
effective?

2.2 Data and Sample Restrictions

I observe all arraignment hearings in NYC held between January 1st 2020 and January 1st 2024 (OCA,
2024). Each observation includes the following variables:

1. The time and place at which the arraignment occurred, denoted by T . This includes the court, year,
and month of the year. Ideally T would also include the courtroom, day of the week, and shift.3

2. Defendant characteristics, denoted by C. This includes their race, age, and sex, along with their
prior criminal history and the current charge, which can be used to determine if they are charged
with a qualifying offense.

3. The identity of the arraignment judge, denoted by the discrete random variable Z on {0, . . . , k}.

4. An indicator for whether the defendant was assigned SR, denoted by D.

5. An indicator for whether the defendant subsequently appeared in court, denoted by Y . I infer court
appearance if there was no bench warrant issued for failure to appear in court.4

To construct my sample of interest, I first keep cases held over three New York City fiscal years from
July 1st 2020 to June 30th 2023. This drops cases held during the early months of the COVID-19 pandemic
and recent cases that may still be pending.5 Second, I drop cases that were disposed at arraignment. A

3I have not yet received these additional variables from the Office of Court Administration.
4I define my outcome of interest to be court appearance Y , rather than failure to appear 1− Y . This reframes deterrence

effects as incentive effects, providing a more natural link to Roy models of treatment selection (Roy, 1951).
5Supervised release was temporarily suspended due to the COVID-19 pandemic between March and June of 2020.
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judge will only decide to dispose a case at arraignment if it contains clear legal defects, so in principle this
decision should not vary across judges (Leslie and Pope, 2017). Third, I drop defendants who were already
incarcerated due to a different offense. Fourth, I drop defendants who were issued a Desk Appearance
Ticket (DAT) rather than being taken into custody prior to arraignment. This is because within a given
court in a given month, judge assignment may differ systematically based on whether a defendant was
issued a DAT or not. Fifth, I drop Kings Criminal Court due to strong evidence of non-random judge
assignment in a given month even after dropping defendants with DATs.6 Sixth, I drop defendants charged
with a qualifying offense according to New York State Criminal Procedure Law (New York State Senate,
2023b). Finally, for the sake of precision I drop court-by-judge bins containing fewer than 30 cases over
the three year sampling period.

2.3 Counterfactuals and Preliminary Assumptions

Let Y (0) and Y (1) denote counterfactual court appearance under ROR and SR, respectively, and let D(z)

denote counterfactual SR assignment under judge z. Observables are related to counterfactuals by the
following switching equations

D = D(Z) =

k∑
z=0

1{Z = z}D(z), Y = Y (D) = (1−D)Y (0) +DY (1)

Implicit in this notation is the usual exclusion restriction: judges must only affect court appearance rates
through SR assignment. Importantly, while judges cannot set monetary bail or detain defendants with
non-qualifying offenses, they may set other non-monetary conditions instead of or in addition to SR.
While in principle this represents a threat to exclusion, in practice judges rarely exercise this option.
Among defendants with non-qualifying offenses, 14% are assigned SR while the next most common
non-monetary conditions are "No Firearms or Weapons" (0.8%) and "Obey Order of Protection" (0.02%).
Unlike SR, these conditions are usually intended to protect the safety of certain individuals (e.g. victims
of domestic violence) rather than increase court appearance rates. Given these institutional details, the
exclusion restriction appears plausible in this setting.

Following the literature on pretrial bail in New York City, I assume that judges are quasi-randomly
assigned to defendants conditional on the court, year, month, and day of the week (Kleinberg et al., 2017).
This comes from the fact that judges are assigned to arraignment shifts by a rotating calendar system.

Assumption 1 (Conditional Exogeneity).

(Y (0), Y (1), D(0), . . . , D(k), C) ⊥⊥ Z | T

Several papers have verified that defendant characteristics appear to be unrelated to judge assignment
conditional on T using data from New York City before the 2020 bail reform (Kleinberg et al., 2017; Arnold
et al., 2022). Defining X := C, T , Assumption 3 implies that (Y (0), Y (1), D(0), . . . , D(k)) ⊥⊥ Z | X ,
the relevant exogeneity condition for the identification results in Section 4.

A key feature of the pretrial bail setting is that bail conditions are naturally ordered in terms of
restrictiveness. This can be seen, for example, in the legal requirement that judges consider "the... degree
of... restriction necessary" to ensure court appearance when making bail decisions (New York State

6In principle, this could be remedied by conditioning on additional variables such as the courtroom, day of the week, and
shift. Unfortunately, I have not yet received these variables from the Office of Court Administration.

5



Senate, 2023a). Implicit in this language is the notion that, ceteris paribus, a defendant will be more likely
to appear in court under a more restrictive condition relative to a less restrictive one. Motivated by this
idea, I assume that SR weakly increases court appearance relative to ROR.

Assumption 2 (Monotone Treatment Response).

Pr(Y (1) ≥ Y (0)) = 1

Put another way, I assume that there are no defendants who would appear in court if assigned
ROR, but would not if assigned SR. Interventions implemented by the SR program are designed to
overcome barriers preventing defendants from appearing in court, including inattentiveness, addiction,
and financial insecurity. Under Assumption 2, while these interventions might not work (we can have
Y (0) = Y (1) = 0) they cannot produce the opposite of their intended effect. One possibility that would
cast doubt on Assumption 2 is if bench warrants were issued for noncompliance with SR conditions (such
as failure to check in with a social worker), rather than failure to appear in court. Rivera (2023) documents
this phenomenon, in which violations of non-monetary conditions themselves are charged as crimes, in
the case of electronic monitoring in Chicago. Unfortunately, my data do not allow me to rule out this
possibility directly. However, according to court administrators and SR staff members, there are rarely any
negative consequences for noncompliance with SR so long as the defendant appears for their required
court dates (MDRC, 2020).

3 Empirical Results using Two-Stage Least Squares

Before specifying a model of judge behavior, I will provide evidence that canonical judge design
methodologies are not well-suited to the empirical setting at hand. In particular, the usual Imbens and
Angrist (1994) monotonicity condition as well as the weaker notion of average monotonicity proposed by
Frandsen et al. (2023) ensure that the TSLS estimand recovers a positively weighted average of treatment
effects.7 In this case, we would expect the TSLS estimand to be non-negative, since treatment effects are
non-negative under Assumption 2. However, TSLS and jackknife instrumental variables estimates of the

7Putting aside the issues of misspecification raised by Blandhol et al. (2022).
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effect of supervision on court appearance reported in Table 1 are negative and significant at the 5% and
10% levels, respectively.

Table 1: OLS, TSLS, and ĲIVE Estimated Effects of SR on Court Appearance and Recidivism

OLS TSLS ĲIVE OLS TSLS ĲIVE

Court Appearance −0.116∗∗∗ −0.069∗∗ −0.063∗ −0.069∗∗∗ −0.058∗ −0.059∗

(0.005) (0.030) (0.036) (0.005) (0.030) (0.035)

Recidivism 0.184∗∗∗ 0.056 0.032 0.093∗∗∗ 0.028 0.017

(0.006) (0.040) (0.048) (0.006) (0.039) (0.046)

Defendant Characteristics No No No Yes Yes Yes
Court Appearance Rate 0.922 0.922 0.922 0.922 0.922 0.922

Recidivism Rate 0.155 0.155 0.155 0.155 0.155 0.155

Number of Judges 167 167 167 167 167 167
Number of Cases 75,262 75,262 75,262 75,262 75,262 75,262

Notes: This table reports estimated coefficients on an indicator for supervised release, the treatment of interest, across several
regression specifications. Rows correspond to different outcome variables, while columns correspond to different regression
procedures. All regressions control for court by year month fixed effects T , while regressions in the last three columns also
control for defendant characteristics C. Standard errors are heteroskedasticity robust but not clustered, since the current dataset
does not contain the required clustering variables. Stars denote ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

The regression specifications in Table 1 adhere to current best practices in judge designs as outlined
by Chyn et al. (2024). Following existing literature, I also include results using an indicator for recidivism
as the outcome of interest. OLS estimates suggest that selection bias is severe in this empirical context:
defendants assigned SR are much less likely to appear in court and much more likely to recidivate.
Including defendant characteristics substantially reduces the magnitude of these estimates, indicating
that certain characteristics are strong confounders. I produce TSLS estimates by using a full set of judge
assignment indicators to instrument for SR. This design may suffer from many-instruments bias, which I
eliminate using the improved jackknife procedure (ĲIVE) proposed by Ackerberg and Devereux (2009).8
Both TSLS and ĲIVE yield similar conclusions: namely, that pretrial supervision reduces compliers’
court appearance rate by roughly 6%.

There are several possible explanations for why TSLS recovers the "wrong sign", in the sense that it is
not consistent with Assumption 2. The first is simply that Assumption 2 does not hold, meaning judges
could increase court appearance rates by choosing not to supervise marginal defendants. As discussed in
Sections 2.1 and 2.3, this explanation is difficult to reconcile with institutional details of the NYC pretrial
system: judges’ objective is to increase court appearance rates by assigning supervision, an intervention
specifically designed for this purpose.

A more plausible explanation might be that Assumption 1 does not hold. For example, in a given
court on a given month, judges with higher supervision propensities might tend to be assigned defendants
with lower court appearance rates. It is difficult to rule out this possibility in the current draft, since I
do not yet have access to all of the conditioning variables T typically used in the literature on NYC

8The ĲIVE procedure corresponds closely to specifications widely adopted in the literature in which a residualized
leave-out-mean measure of judge SR propensity is used as the instrument. The unbiased jackknife estimator (UJIVE) proposed
by Kolesár (2013) yields nearly identical results.
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pretrial bail decisions to justify Assumption 1. However, Appendix Table 3 presents a test of exogeneity
in which first-stage fitted values from a TSLS / ĲIVE specification without defendant characteristics C
are regressed on C and T . If Z ⊥⊥ C | T , the coefficients on C in this regression should be zero. An
F-test of the joint nullity of these coefficients fails to reject for the ĲIVE specification, with a p-value of
0.17. This lends some credence to the notion that judges are quasi-randomly assigned conditional on T ,
despite the limitations of the current dataset.

A final explanation would involve failures of either exclusion or monotonicity. Indeed, the joint
test of exclusion and monotonicity proposed by Frandsen et al. (2023) rejects at the 1% level for all
of the specifications considered in Table 1. Even if we replace these assumptions with their "average"
counterparts from Frandsen et al. (2023), Assumption 2 still guarantees a non-negative TSLS estimand. By
contrast, Chan et al. (2022) propose a plausible mechanism through which monotonicity violations may
cause TSLS to recover the wrong sign, a phenomenon that they document in the context of radiologists
making pneumonia diagnoses. Even if supervision can only weakly increase court appearance, a less
skilled judge may choose to supervise more defendants than a more skilled judge but nevertheless achieve
a lower court appearance rate. This would produce an inverse relationship between supervision rates
and court appearance rates across judges, resulting in a negative TSLS estimand.9 Ultimately, TSLS
fails in this example because it does not account for variation in the quality of judges’ signals about
potential outcomes. This motivates developing a model of judge behavior that incorporates heterogeneous
signal quality, allowing the researcher to learn about treatment effects not only from variation in judge
preferences but also from variation in judge skill.

4 Behavioral Model

I model judges as facing a decision problem with the following structure

1. A defendant appears before judge z at an arraignment hearing. Judge z’s information set consists of
X,Sz , where X includes court-by-time and defendant characteristics observed by all judges and Sz
is an exogenous judge-specific signal. X is observed by the econometrician, while Sz is not.10

2. For d ∈ {0, 1}, judge z’s ex post utility of assigning release condition D(z) = d is given by Uz(d),
which may depend onX,Sz and the defendant’s counterfactual court appearance Y (0), Y (1). Judge
z uses her information set X,Sz to form a posterior Pz over the unobserved state Y (0), Y (1) given
her beliefs.

3. Judge z choosesD(z) to maximize ex ante expected utility Ez[Uz(D(z)) | X,Sz], where Ez denotes
her expectation with respect to the posterior Pz .

4. Finally, the defendant’s court appearance Y (D(z)) is realized, along with judge z’s ex post utility
Uz(D(z)).

There are three model primitives that characterize this decision problem: judges’ expectation
operators Ez, preferences Uz , and signals Sz . In Section 4.1, I propose a baseline model in which

9For a visual representation of this phenomenon, see Panel B of Figure 1
10I sometimes refer to judges’ signals Sz as their private information. This information is only "private" in the sense that it is

not observed by the econometrician. Although all judges are assumed to observe X , I do not take a stand on what components of
Sz may or may not be shared across judges.
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I assume rational expectations and adopt preferences from the Extended Roy Model (Heckman and
Vytlacil, 2007; D’Haultfœuille and Maurel, 2013). However, unlike the Extended Roy Model, I allow
for unrestricted heterogeneity in signals Sz across judges, and make no assumptions regarding their
distribution. In Section 4.2, I show that under the baseline model, conditional average counterfactuals
E[Y (0) | X = x],E[Y (1) | X = x] must satisfy a simple restriction which, along with Assumptions 1
and 2, characterizes their sharp identified set. Finally, in Sections 4.3 and 4.4 I relax the baseline model’s
strong assumptions on expectations and preferences and provide sufficient conditions under which my
main identification results from Section 4.2 still hold.

4.1 Baseline Model

Assumption 3 (Extended Roy Model with Heterogeneous Signals). For all z ∈ {0, . . . , k},

Y (0), Y (1) ⊥⊥ D(z) | X,Sz (1)

D(z) ∈ argmax
d∈{0,1}

E[Uz(d) | X,Sz] (2)

Uz(d) = Y (d)− λz(X)d (3)

Equation (1) formalizes the sense in which X,Sz constitutes judge z’s information set. It is only
meaningful if D(z) is a non-degenerate random variable conditional on X,Sz . In this case, Equation (2)
implies that judge z must be indifferent between ROR and SR ex ante. So, any tie-breaking mechanism
must be independent of the unobserved state. If not, then judge z must have received information about
the unobserved state that is not captured by X,Sz , contradicting the notion that X,Sz represents her
information set.

Equation (2) posits rational expectations, replacing judges’ expectation operators Ez with the
expectation operator of the underlying data generating process E. In other words, judges are assumed to
have accurate beliefs about the distribution of Y (0), Y (1) and update those beliefs according to Bayes’
rule. In Section 4.3, I relax this assumption by allowing Ez to arise from Bayesian updating of inaccurate
beliefs conditional on X .

Equation (3) specifies that the ex post net benefit of assigning SR relative to ROR is given by

Uz(1)− Uz(0) = Y (1)− Y (0)− λz(X)

Judges weigh the benefit of increased court appearance due to supervision, Y (1)− Y (0), against their
perceived cost of assigning supervision, λz(X). This cost is measured in units of court appearance, so it
represents judge z’s marginal rate of substitution between supervision and court appearance. Differences
in costs across judges may arise for a variety of reasons. For example, if judge z assesses the negative
welfare impact of supervision for defendants with characteristicsC ⊂ X to be large relative to judge z′, we
may have λz(X) > λz′(X), ceteris paribus. Alternatively, if judge z considers the cost of a missed court
date to be large relative to judge z′, we may have λz(X) < λz′(X), ceteris paribus. Importantly, although
costs may be heterogeneous across judges, costs for a given judge must only depend on observables. This is
what distinguishes preferences in an Extended Roy Model from those in a Generalized Roy Model, which
also allows for unobserved costs (Heckman and Vytlacil, 2007). In Section 4.4, I relax this requirement by
incorporating idiosyncratic taste shocks, a particular type of unobserved cost.

To illustrate the empirical content of Assumption 3, I will begin by defining judge z’s marginal
treatment effect (MTE) curve conditional on X = x. Denote judge z’s ex ante expected gross benefit
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of supervision E[Y (1) − Y (0) | X = x, Sz] by Vz , and suppose for the sake of exposition that its cdf
FVz |X=x is continuous.11 Then by Assumption 3, among defendants with X = x

D(z) = 1{E[Y (1)− Y (0)− λz(X) | X = x, Sz] ≥ 0}

= 1{Vz ≥ λz(x)}

= 1{FVz |X=x(Vz) ≥ FVz |X=x(λz(x))}

= 1{1− FVz |X=x(Vz)︸ ︷︷ ︸
:= Uz

≤ 1− FVz |X=x(λz(x))}

where we have taken the probability integral transform of Vz to arrive at a uniformly distributed latent
index Uz . Judge z’s MTE curve is given by the following function of u ∈ [0, 1]

MTEz(u | x) := E[Y (1)− Y (0) | X = x, Uz = u]

= E[Y (1)− Y (0) | X = x, 1− FVz |X=x(Vz) = u]

= E[Y (1)− Y (0) | X = x, Vz = F−1
Vz |X=x(1− u)]

= E[E[Y (1)− Y (0) | X = x, Vz = F−1
Vz |X=x(1− u), Sz] | X = x, Vz = F−1

Vz |X=x(1− u)]

= E[E[Y (1)− Y (0) | X = x, Sz] | X = x, Vz = F−1
Vz |X=x(1− u)]

= E[Vz | X = x, Vz = F−1
Vz |X=x(1− u)]

= F−1
Vz |X=x(1− u)

Notice that MTEz(u | x) is positive (by Assumption 2) and decreasing (since F−1
Vz |X=x is increasing). By

implementing a threshold rule on Uz , judge z only assigns supervision to those defendants with the highest
ex ante expected treatment effects of supervision. This means that for any given rate of supervision r,
judge z achieves the highest feasible court appearance rate given her signal. We will refer to this function
of r ∈ [0, 1] as her MTE frontier

Fz(r | x) := E[Y (0) | X = x] +

∫ r

0
MTEz(u | x)du

The function Fz(r | x) is increasing and concave, and can be seen as a production–possibility frontier
in supervision by court appearance rate space. By Assumption 3, judge z’s ex ante expected utility
conditional on X = x is given by

E[Uz(D(z)) | X = x] = E[Y (D(z))− λz(x)D(z) | X = x]

= E[Y | X = x, Z = z]− λz(x)E[D | X = x, Z = z] by Assumption 1

So, Assumption 3 admits a simple economic interpretation: we can view judge z as directly choosing
her supervision and court appearance rates to maximize her expected utility subject to the feasibility
constraint imposed by her MTE frontier

E[D | X = x, Z = z],E[Y | X = x, Z = z] ∈ argmax
r,y∈[0,1]×[0,1]

y − λz(x)r

s.t. y ≤ Fz(r | x)

11This avoids the possibility that indifference occurs with positive probability, Pr(Vz = λz(x) | X = x) > 0.
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The constraint binds at the optimum and, if E[D | X = x, Z = z] ∈ (0, 1),

λz(x) =
∂Fz(r | x)

∂r

∣∣∣∣
E[D|X=x,Z=z]

= MTEz(E[D | X = x, Z = z] | x)

so the marginal cost of supervision is equal to the benefit of assigning supervision to a marginal defendant.
Assumption 3 is considerably weaker than the canonical Extended Roy Model, in which it is typically

assumed that all judges receive the same signal Sz := S (Canay et al., 2023). As shown by Vytlacil (2002),
this implies the monotonicity assumption of Imbens and Angrist (1994), and is a sufficient condition for
all judges to have the same MTE frontier.12 By shutting down heterogeneity in beliefs and signals, the
Extended Roy Model attributes any variation in behavior across judges to heterogeneity in preferences.13
As shown by Chan et al. (2022), this can produce highly misleading results when variation in judge
behavior is in fact driven by heterogeneity in signals rather than preferences.

For example, suppose two judges z and z′ have the same preferences λz(x) = λz′(x) but Vz is a
mean-preserving spread of Vz′ . Judge z is more skilled than judge z′ in the sense that Sz is Blackwell
more informative than Sz′ about the payoff-relevant unobserved state Y (1)− Y (0) (Blackwell, 1953).
Figure 1 illustrates two possibilities for how this could translate into differences in judge behavior.

Figure 1: Judge Behavior Across Skill Levels, Holding Preferences Fixed

Notice that in both cases, the Wald estimand

E[Y | X = x, Z = z′]− E[Y | X = x, Z = z]

E[D | X = x, Z = z′]− E[D | X = x, Z = z]

is outside [0, 1], the support of treatment effects; in Panel A it is equal to 2, while in Panel B it is equal
to −0.75. Consequently, it cannot possibly represent a positively weighted average of treatment effects.
Furthermore, Figure 1 shows that the sign of the bias is indeterminate and may be sensitive to small
changes in judge preferences. So, despite Assumption 3 holding in this simple example, methods such as

12In principle, judges may receive different signals so long as they all produce the same distribution FVz |X=x. These signals
are equivalent from the perspective of expected utility maximization, since they generate the same distribution of posteriors over
the payoff-relevant unobserved state Y (1)− Y (0).

13As discussed in Section 4.3, certain types of heterogeneity in beliefs are indistinguishable from heterogeneity in preferences,
and can therefore be incorporated into the Extended Roy Model.
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Two-Stage Least Squares or Local Instrumental Variables will fail to capture any kind of local average
treatment effect (Imbens and Angrist, 1994; Heckman and Vytlacil, 1999).

The notion that violations of monotonicity can threaten the validity of instrumental variables designs
has been well-understood ever since montonicity was first proposed (Angrist et al., 1996). However,
judge designs provide a particularly plausible setting in which such violations may occur: judges may
have different levels of experience, or different mental limitations that affect the quality of their signals.
Indeed, recently proposed tests designed to detect situations like Figure 1 have rejected monotonicity
across several empirical contexts, including the context of bail decisions in New York City before the
2020 bail reform (Frandsen et al., 2023; Chan et al., 2022; Arnold et al., 2022). As a result, a growing
literature has considered the question of what can be learned from judge designs when monotonicity does
not hold. In Section 4.2, I contribute to this literature by showing that, despite placing no restrictions on
judges’ private information, Assumption 3 nevertheless tightens the sharp bounds on conditional average
treatment effects.

4.2 Identification Results under the Baseline Model

As discussed in Section 4.1, Assumptions 1 and 3 imply that judges act as if they directly choose
supervision and court appearance rates on their MTE frontiers

E[Y | X = x, Z = z] = Fz(E[D | X = x, Z = z] | x)

in order to maximize their expected utility. For all judges, we know that

Fz(0 | x) = E[Y (0) | X = x], Fz(1 | x) = E[Y (1) | X = x]

so they could have chosen to supervise noone (everyone) and achieve the conditional average counterfactual
under ROR (SR) as their court appearance rate. By revealed preference, both of these options must not
have yielded a higher expected utility than the option they actually chose

E[Y (0) | X = x] ≤ E[Y | X = x, Z = z]− λz(x)E[D | X = x, Z = z] (4)

E[Y (1) | X = x]− λz(x) ≤ E[Y | X = x, Z = z]− λz(x)E[D | X = x, Z = z] (5)

In the case of an interior solution, we can rearrange terms to get

E[Y (1) | X = x]− E[Y | X = x, Z = z]

1− E[D | X = x, Z = z]
≤ λz(x) ≤

E[Y | X = x, Z = z]− E[Y (0) | X = x]

E[D | X = x, Z = z]

which, by Assumption 1, is equivalent to

ATUz(x) ≤ λz(x) ≤ ATTz(x)

ATUz(x) := E[Y (1)− Y (0) | X = x,D(z) = 0]

ATTz(x) := E[Y (1)− Y (0) | X = x,D(z) = 1]

So, regardless of judges’ preferences, it must be the case that ATUz(x) ≤ ATTz(x), meaning there is
positive selection on gains from supervision. Alternatively, we can directly deduce the existence of positive
selection on gains from the fact that judge-specific MTE curves are decreasing, as derived in Section 4.1.

The central idea behind my identification results is that the implication of positive selection on
gains exhausts the empirical content of Assumption 3 regarding conditional average counterfactuals. In
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particular, for any pair E[Y (0) | X = x],E[Y (1) | X = x] consistent with Assumptions 1 and 2 that
satisfies ATUz(x) ≤ ATTz(x) for all z ∈ {0, . . . , k}, there exist preferences {λz(x)}kz=0 and signals
{Sz}kz=0 such that judges behave according to Assumption 3. I formalize this idea in the following
theorem.

Theorem 1. Under Assumptions 1, 2 and 3, the sharp identified set for the pair of conditional average
counterfactuals E[Y (0) | X = x],E[Y (1) | X = x] for any x ∈ supp(X) is given by the convex polygon

Y(x) =
{
y0, y1 ∈ [0, 1]× [0, 1] such that for all z ∈ {0, . . . , k},

y0 ≥ E[(1−D)Y | X = x, Z = z] (6)

y0 ≤ E[Y | X = x, Z = z]− E[D | X = x, Z = z](y1 − y0) (7)

y1 ≥ E[Y | X = x, Z = z] (8)

y1 ≤ 1− E[D(1− Y ) | X = x, Z = z]
}

(9)

which yields the following sharp bounds on the conditional average treatment effect

τ(x) ≤ E[Y (1)− Y (0) | X = x] ≤ τ(x)

τ(x) := max

{
max

z̃
{E[Y | X = x, Z = z̃]} −min

z
{E[Y | X = x, Z = z]},

max
z∈Z0

{
maxz̃{E[Y | X = x, Z = z̃]} − E[Y | X = x, Z = z]

1− E[D | X = x, Z = z]

}}
τ(x) := min

{
min
z

{1− E[D(1− Y ) | X = x, Z = z]} −max
z̃

{E[(1−D)Y | X = x, Z = z̃]},

min
z∈Z1

{
E[Y | X = x, Z = z]−maxz̃{E[(1−D)Y | X = x, Z = z̃]}

E[D | X = x, Z = z]

}}
Z0 := {z ∈ {0, . . . , k} : E[D | X = x, Z = z] ̸= 1}

Z1 := {z ∈ {0, . . . , k} : E[D | X = x, Z = z] ̸= 0}

Inequality 7 is equivalent to ATUz(x) ≤ ATTz(x), the key restriction coming from Assumption 3.
Without Assumption 3, the sharp identified set Y(x) would be defined similarly, but with Inequality 7
replaced by y0 ≤ E[Y | X = x, Z = z]. In this case, Y(x) would be a combination of Manski
instrumental variable and Manski monotone treatment response bounds (Manski, 1990, 1997). If, in
the spirit of Manski and Pepper (2000)’s monotone treatment selection assumption, Inequality 7 were
directly invoked as a model primitive instead of Assumption 3, we would arrive at exactly the same
sharp identified set as in Theorem 1. The primary contribution of Theorem 1, then, is to provide a strong
decision theoretic foundation for positive selection on gains as the only restriction implied by an Extended
Roy Model with heterogeneous signals.

Theorem 1 is closely related to fundamental results from the literature on information design and robust
predictions: specifically, Theorem 1 of Bergemann and Morris (2016), as operationalized by Gualdani and
Sinha (2019) for the case of discrete choice models. Since we have assumed rational expectations, we can
consider conditional average counterfactuals as summarizing judges’ common prior over the unobserved
state Y (0), Y (1) conditional on X = x. Assumptions 1 and 2 place restrictions on this common prior in
the form of Manski bounds, even in the absence of a behavioral model. If, in addition to these restrictions,
Inequality 7 holds, then there exist preferences {λz(x)}kz=0 such that Inequalities 4 and 5 hold. These

13



inequalities, referred to as "obedience conditions", in turn ensure the existence of signals {Sz}kz=0 such
that judges behave according to Assumption 3 given their common prior (Bergemann and Morris, 2016).

While preference parameters λz(x) do not appear in Theorem 1, sharp bounds on λz(x) in the case of
an interior solution follow from the fact that ATUz(x) ≤ λz(x) ≤ ATTz(x).

Corollary 1. Under Assumptions 1, 2 and 3, sharp bounds on preference parameters λz(x) are given by

λz(x) ≤ λz(x) ≤ λz(x)

λz(x) :=


τ(x) if E[D | X = x, Z = z] = 0

maxz̃{E[Y |X=x,Z=z̃]}−E[Y |X=x,Z=z]
1−E[D|X=x,Z=z] if E[D | X = x, Z = z] ∈ (0, 1)

−∞ if E[D | X = x, Z = z] = 1

λz(x) :=


∞ if E[D | X = x, Z = z] = 0

E[Y |X=x,Z=z]−maxz̃{E[(1−D)Y |X=x,Z=z̃]}
E[D|X=x,Z=z] if E[D | X = x, Z = z] ∈ (0, 1)

τ(x) if E[D | X = x, Z = z] = 1

where τ(x), τ(x) are defined as in Theorem 1. In particular, for all z ∈ {0, . . . , k},

λz(x) ≤ τ(x) ≤ τ(x) ≤ λz(x)

As discussed in Section 4.1, at an interior solution λz(x) represents the marginal treatment effect for
defendants with X = x and Uz = E[D | X = x, Z = z]. In stark contrast to the canonical Extended Roy
Model, Assumptions 1, 2 and 3 are always more informative about conditional average treatment effects
than they are about marginal treatment effects. In addition, while Theorem 1 is robust to the presence of
certain inaccurate beliefs or taste shocks as described in Sections 4.3 and 4.4, Corollary 1 is not.

4.3 Incorporating Inaccurate Beliefs

Assumption 3 specifies that judges have rational expectations. In particular, they have accurate prior
beliefs about the unobserved state Y (0), Y (1) conditional on X , denoted by

πy0y1(x) := Pr(Y (0) = y0, Y (1) = y1 | X = x)

For the sake of exposition, suppose judge signals Sz admit a probability density function conditional on
Y (0), Y (1), and X , denoted by

fy0y1z (s | x) := fSz |Y (0),Y (1),X(s | y0, y1, x)

Then under Assumption 3, judges update their prior beliefs to form posteriors according to Bayes’ rule

Pr(Y (0) = y0, Y (1) = y1 | X,Sz) =
πy0y1(X)fy0y1z (Sz | X)

π00(X)f00z (Sz | X) + π01(X)f01z (Sz | X) + π11(X)f11z (Sz | X)

where π10(X) = 0 by Assumption 2.
While the assumption of accurate beliefs is convenient in that it provides a tight link between judges’

decision making process and the underlying DGP, it can be difficult to justify in the context of pretrial bail
decisions. For example, Rambachan (2024) estimates that more than a fifth of New York City judges before
the 2020 bail reform behaved in a manner inconsistent with expected utility maximization at accurate

14



beliefs. He finds that these judges’ beliefs underreact to predictable variation in court appearance rates
across observable characteristics, which is consistent with evidence from the literature on algorithmic
decision aids (Angelova et al., 2023). This motivates accommodating inaccurate beliefs with the following
generalization of Assumption 3.

Assumption 3′ (Assumption 3 with Inaccurate Beliefs). Replace Equation (2) in Assumption 3 by

D(z) ∈ argmax
d∈{0,1}

Ez[Uz(d) | X,Sz]

where Ez is a subjective expectation with respect to the posterior Pz over Y (0), Y (1) arising from
Bayesian updating of potentially inaccurate beliefs conditional on X

Pr(π00z (X), π01z (X), π11z (X) ≥ 0) = 1

Pr(π00z (X) + π01z (X) + π11z (X) = 1) = 1

Pz(Y (0) = y0, Y (1) = y1 | X,Sz) =
πy0y1z (X)fy0y1z (Sz | X)

π00z (X)f00z (Sz | X) + π01z (X)f01z (Sz | X) + π11z (X)f11z (Sz | X)

In Assumption 3′, judge z’s "experiment" f00z , f01z , f11z in the sense of Blackwell (1953) remains the
same as in Assumption 3.14 However, her beliefs about the conditional distribution of the unobserved
state π00z , π01z , π11z are left completely unspecified. The following lemma establishes sufficient conditions
under which Theorem 1 still holds when we replace Assumption 3 by Assumption 3′.

Lemma 1. Suppose Assumptions 1, 2 and 3′ hold, and let x ∈ supp(X). If we additionally assume that
for all z ∈ {0, . . . , k}, either

1. Beliefs about the relative proportion of always-appearers and never-appearers are accurate, so

π11z (x)

π00z (x) + π11z (x)
=

π11(x)

π00(x) + π11(x)

or

2. Signals are only informative about treatment effects, so

f00z (s | x) = f11z (s | x)

for all s ∈ supp(Sz | X = x)

then the identified set for conditional average counterfactuals Y(x) is the same as in Theorem 1.

If neither of the above conditions hold, judges may misperceive the distribution of their signal
conditional onX = x and the event Y (1)−Y (0) = 0. This could cause them to make systematic mistakes
when ranking defendants based on inaccurate predictions of treatment effects Ez[Y (1)−Y (0) | X = x, Sz],
potentially violating positive selection on gains and by extension Theorem 1. However, when either of the
above conditions hold, judges will rank defendants correctly, but they will act as if they have a higher
(lower) cost of supervision λz(x) if their perceived CATE π01z (x) is smaller (larger) than the true CATE
π01(x). So, under the assumptions of Lemma 1, it is impossible to distinguish preferences from beliefs.
For example, a judge with a moderate cost of supervision who believes that supervision is moderately

14In the literature on robust predictions, this is referred to as her information structure.
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effective might behave in the same way as a judge with a high cost of supervision who believes that
supervision is highly effective. While this invalidates the bounds on preferences in Corollary 1, it does not
affect the results from Theorem 1 since there must still be positive selection on gains regardless of judges’
preferences.

Lemma 1 is only a useful generalization of Theorem 1 if we can justify the sufficient conditions it
imposes. To this end, models of rational inattention are an important special case to consider (Sims, 2003).
In these models, signals are endogenously determined and information is costly to obtain. Consequently,
it cannot be optimal for judges to incur the cost of acquiring information to distinguish between states of
the world that are not payoff-relevant. Given the preferences specified in Assumption 3, Y (1) − Y (0)

represents judges’ payoff-relevant unobserved state. So, the condition that signals are only informative
about treatment effects will arise endogenously in a large class of rational inattention models.

4.4 Incorporating Taste Shocks

According to Assumption 3, judges make decisions that are not only based on accurate beliefs, but also
contain no noise. Any noise contained in judge z’s signal is integrated out when she forms her posterior.
As a result, putting aside the possibility of indifference, if judge z makes a different decision for two
observably identical defendants, she must have a received a signal that the one she chose to supervise
had predictably higher returns from supervision. This contradicts a growing literature documenting how
seemingly irrelevant factors may influence judges’ decisions, such as the defendant’s facial features
(Ludwig and Mullainathan, 2024), or whether the local football team recently lost a game (Eren and Mocan,
2018). To allow for noisy decisions, I augment Assumption 3 by including taste shocks εz(0), εz(1) that
judges receive at arraignment.

Assumption 3′′ (Assumption 3 with Taste Shocks). For all z ∈ {0, . . . , k},

Y (0), Y (1) ⊥⊥ D(z) | X,Sz, εz(0), εz(1)

D(z) ∈ argmax
d∈{0,1}

E[Uz(d) | X,Sz, εz(0), εz(1)]

Uz(d) = Y (d)− λz(X)d+ εz(d)

For defendants with X = x, judges assign supervision if their ex ante expected benefit of supervision
exceeds their perceived cost of supervision

E[Y (1)− Y (0) | X = x, Sz] > λz(x) + εz(0)− εz(1)

where the difference in taste shocks εz(0)− εz(1) can be interpreted as an unobserved cost. Under this
model, judges might exhibit negative selection on gains if there is a positive correlation between their
unobserved costs and ex ante expected benefits. However, to rule out negative selection on gains, it suffices
to assume that taste shocks are idiosyncratic. The following lemma establishes that in this case, Theorem 1
still holds when we replace Assumption 3 by Assumption 3′′.

Lemma 2. Suppose Assumptions 1, 2 and 3′′ hold, and let x ∈ supp(X). If we additionally assume that
taste shocks are idiosyncratic

εz(0), εz(1) ⊥⊥ Y (0), Y (1), Sz | X = x

then the identified set for conditional average counterfactuals Y(x) is the same as in Theorem 1.
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Unlike Lemma 1, under the assumptions of Lemma 2 judges may not correctly rank defendants based
on predicted treatment effects E[Y (1) − Y (0) | X = x, Sz] when deciding who to supervise. These
misrankings are driven by unobserved costs that are assumed to be idiosyncratic, but whose distribution
is unspecified and may be heterogeneous across judges. Interestingly, this may cause violations of a
stronger notion of positive selection on gains that requires judge-specific MTE curves MTEz(u | x) to be
decreasing, as they are under Assumption 3.15 Nevertheless, the weaker condition ATUz(x) ≤ ATTz(x)

still holds, and therefore so does Theorem 1. By contrast, Corollary 1 no longer holds under the assumptions
of Lemma 2. Even if we assume that unobserved costs are mean zero, we cannot distinguish judges with
weak signals and small unobserved costs from judges with strong signals and large unobserved costs.
Intuitively, the problem is that preferences λz(x) are defined relative to the scale of the distribution of
unobserved costs.

5 Empirical Results under the Behavioral Model

5.1 Estimation Strategy

The sharp identified set for conditional average counterfactuals Y(x) defined in Theorem 1 has the
advantage of admitting a simple expression in terms of population moments and being robust to the
presence of certain unobserved costs and inaccurate beliefs. However, performing estimation and inference
on Y(x) requires overcoming several challenges. First, since X and Z are high-dimensional, it will
typically not be possible to estimate objects like E[Y | X,Z] at a n−1/2 rate in the L∞ sense. Second,
even if we could come up with a n−1/2-consistent estimator of E[Y | X = x, Z = z], we still cannot
construct a locally asymptotically unbiased estimator of, for example, maxz{E[Y | X = x, Z = z]}
(Hirano and Porter, 2012). To make progress, we will estimate treatment effect parameters of the form

θ0 = E[Y (1)− Y (0) | X ∈ X ]

where the event X ∈ X occurs with reasonably high probability, for the sake of precision. The sharp
identified set for θ0 is simply

θ0 ≤ θ0 ≤ θ0

θ0 := E[τ(X) | X ∈ X ]

θ0 := E[τ(X) | X ∈ X ]

where τ(X) and τ(X) are defined as in Theorem 1. This follows from the fact that the partially identified
sets in Theorem 1 are rectangular over X .

The technique I employ to estimate bounds on θ0 comes from Semenova (2024), who takes advantage
of the fact that the expectation operator E[· | X ∈ X ] smooths over the non-differentiability of the min{·}
and max{·} functions contained in τ(X) and τ(X). This allows for n−1/2 consistent, joint asymptotically
normal estimation of the bounds on θ0 so long as we can estimate objects like E[Y | X,Z] at a n−1/4 rate
in the L∞ sense and the margin assumption from Mammen and Tsybakov (1999) holds. Intuitively, we
need to be able to approximate conditional expectation functions sufficiently well (say, with a machine
learning algorithm), and there must not be too high a concentration of judges who are near maximizers or

15Judge-specific MTE curves are guaranteed to be decreasing under the additional restriction that taste shocks admit a
log-concave density function.
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minimizers of the expressions in τ(X) and τ(X). Under these conditions, Semenova (2024) shows that
we may directly apply double machine learning techniques from Chernozhukov et al. (2018) to efficiently
estimate bounds on θ0, despite the fact that the score functions are only directionally differentiable.

For example, consider letting X be the support of X and estimating the sharp lower bound on the
average treatment effect given by

θ0 = E
[
max

z

{
maxz̃{E[Y | X,Z = z̃]} − E[Y | X,Z = z]

1− E[D | X,Z = z]

}]
assuming E[D | X,Z = z] ̸= 1 with probability 1. Let z∗(X) and z̃∗(X) denote the maximizers of the
outer and inner maximands, respectively, which I assume are unique with probability 1 for the sake of
simplicity. Also, define

f0(x, z) := E[Y | X = x, Z = z]

g0(x, z) := E[D | X = x, Z = z]

h0(x, z) := Pr(Z = z | X = x)

W := (Y,D,Z,X)

I estimate θ0 using the following Neyman orthogonal score

ψ(W ; θ, f, g, h) =
f(X, z̃∗(X))− f(X, z∗(X))

1− g(X, z∗(X))
− θ

− 1{Z = z∗(X)}
h(X, z∗(X))

1

1− g(X, z∗(X))
(Y − f(X, z∗(X)))

+
1{Z = z∗(X)}
h(X, z∗(X))

f(X, z̃∗(X))− f(X, z∗(X))

(1− g(X, z∗(X)))2
(D − g(X, z∗(X)))

+
1{Z = z̃∗(X)}
h(X, z̃∗(X))

1

1− g(X, z∗(X))
(Y − f(X, z̃∗(X)))

For ease of notation, I suppress the dependence of z∗(X) and z̃∗(X) on f and g. are By construction, θ0
satisfies the moment condition E[ψ(W ; θ0, f0, g0, h0)] = 0. Given an i.i.d. sample {Wi}ni=1, I estimate
θ0 by θ̂ satisfying the empirical analog

1

n

n∑
i=1

ψ(Wi; θ̂, f̂ , ĝ, ĥ) = 0

where f̂ , ĝ, and ĥ are cross-validated gradient-boosted trees models. Importantly, the predictions
f̂(Xi, z), ĝ(Xi, z), and ĥ(Xi, z) used to construct ψ are out-of-sample predictions formed during 30-fold
cross-fitting, which occurs after cross-validation.16 I estimate the asymptotic variance of θ̂ by

σ̂2 :=
1

n

n∑
i=1

ψ(Wi; θ̂, f̂ , ĝ, ĥ)
2

Finally, I repeat this process 30 times to reduce noise arising from the sample splitting required to construct
out-of-sample predictions, aggregating the results as recommended by Chernozhukov et al. (2018).

16For additional details on cross-fitting, see Chernozhukov et al. (2018).
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5.2 Preliminary Results

Table 2 presents estimated bounds on average counterfactuals, the ATE, ATT, and ATU.

Table 2: Estimated Bounds on Treatment Effect Parameters

Full Sample 2022 Onwards

ATE (0.029, 0.099) (0.042 0.115)
[0.007, 0.110] [0.008 0.131]

ATT (0.325, 0.486) (0.426 0.477)
[0.123, 0.594] [0.149 0.631]

ATU (0.000, 0.059) (0.000 0.072)
[0.000, 0.064] [0.000 0.080]

E[Y (0)] (0.877, 0.892) (0.854 0.859)
[0.867, 0.910] [0.837 0.888]

E[Y (1)] (0.921, 0.976) (0.901 0.968)
[0.912, 0.980] [0.887 0.975]

Supervision Rate 0.092 0.104

Court Appearance Rate 0.922 0.903

Number of Judges 167 139
Number of Cases 75,262 43,994

Notes: Bounds on parameters are derived from Theorem 1. Double machine
learning estimated bounds are reported in parentheses. 90% confidence
intervals for parameters based on Stoye (2009) are reported below in square
brackets.

The average deterrence effect of supervised release among defendants charged with non-qualifying
offenses is economically significant, increasing the court appearance rate (or equivalently, decreasing
the failure to appear rate) by between 2.9% and 9.9%; it is also statistically significant at the 5% level.
Effects are somewhat larger in the latter half of the sampling period in which court appearance rates
were lower and supervision rates were higher. There is strong positive selection on gains, with the lower
confidence bound on the ATT (12.3%) being nearly twice as large as the upper confidence bound on
the ATU (6.4%). Bounds on E[Y (0)] imply that if the supervised release program did not exist and all
defendants with non-qualifying offenses were released on recognizance, the court appearance rate would
have been between 2.9% and 4.4% lower over the entire sampling period.

Given the limitations of my current dataset (in the form of sample restrictions and imperfect
conditioning variables), I consider these results to be a promising proof of concept. In future versions of
this paper, I hope to apply the same methodology to a more complete dataset from the Office of Court
Administration.
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6 Appendix Tables

Table 3: Test of Quasi-Random Judge Assignment

TSLS SR Fitted Values ĲIVE SR Fitted Values

Representation Type

Public Defender −0.00051∗ −0.00042∗

(0.00028) (0.00023)
Retained Attorney −0.00004 −0.00003

(0.00043) (0.00036)
Assigned Counsel (18B) 0.00046 0.00031

(0.00049) (0.00041)
No Lawyer at Arraignment 0.00057 0.00049

(0.00080) (0.00067)
Charge Severity

Unclassified Misdemeanor 0.00029 0.00013
(0.00161) (0.00134)

Class B Misdemeanor −0.00011 −0.00009
(0.00121) (0.00101)

Class E Felony 0.00006 −0.00027
(0.00090) (0.00075)

Class D Felony −0.00049 −0.00066
(0.00093) (0.00078)

Class C Felony 0.00373∗ 0.00274
(0.00219) (0.00181)

Class B Felony 0.00084 0.00043
(0.00106) (0.00088)

Class A Felony −0.00011 −0.00064
(0.00273) (0.00230)

Charge Category

Attempt −0.00004 0.00001
(0.00135) (0.00113)

Property −0.00128∗∗∗ −0.00102∗∗∗

(0.00045) (0.00038)
Larceny −0.00006 −0.00003

(0.00061) (0.00051)
Drug −0.00108 −0.00084

(0.00075) (0.00062)
Aggravated Harassment −0.00112∗ −0.00094∗

(0.00064) (0.00053)
Endangering Welfare −0.00032 −0.00036

(0.00092) (0.00077)
Robbery −0.00088 −0.00095

(0.00189) (0.00157)
Burglary 0.00258 0.00209

(0.00202) (0.00168)
Criminal Trespass 0.00218 0.00180

(0.00177) (0.00148)
Criminal Possession of a Weapon −0.00001 −0.00014

(0.00116) (0.00098)
Obstruction 0.00075 0.00072

(0.00147) (0.00123)
Other Penal Law −0.00084 −0.00063

(0.00070) (0.00058)
Driving While Intoxicated −0.00101 −0.00066

(0.00159) (0.00132)
Unlicensed Operation of a Vehicle 0.00057 0.00068

(0.00177) (0.00147)
Other Vehicle and Traffic Law 0.00124 0.00097

(0.00184) (0.00153)
Criminal History
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Table 3: Test of Quasi-Random Judge Assignment

TSLS SR Fitted Values ĲIVE SR Fitted Values

Felony Count 0.00003 −0.00003
(0.00017) (0.00014)

Misdemeanor Count 0.00013∗ 0.00005
(0.00007) (0.00006)

Pending Felony −0.00062 −0.00074
(0.00125) (0.00104)

Pending Misdemeanor 0.00213∗ 0.00154
(0.00122) (0.00102)

Probation or Parole Supervision −0.00020 −0.00023
(0.00069) (0.00058)

Criminal History Unknown −0.00202 −0.00166
(0.00267) (0.00224)

Demographics

Age Divided by 100 −0.00081 −0.00052
(0.00109) (0.00091)

Female 0.00026 0.00027
(0.00029) (0.00025)

Hispanic −0.00026 −0.00022
(0.00032) (0.00027)

White −0.00051 −0.00040
(0.00032) (0.00027)

Asian −0.00106 −0.00088
(0.00066) (0.00055)

Court by Year Month FEs Yes Yes
Within R2 0.00073 0.00063
Outcome Mean 0.09228 0.09228
Outcome SD 0.05390 0.05077
P-value of Joint F-test 0.04497 0.17221
Number of Cases 75,262 75,262

This table reports estimated coefficients on defendant characteristics C from OLS regressions of
first-stage fitted values onC and court by year month fixed effects T . Each column corresponds to
a different procedure used to construct the first-stage fitted values. The first column uses the fitted
values from an OLS regression of supervised release D on a full set of judge indicators and T .
The second column uses the fitted values from an OLS regression of D on the ĲIVE constructed
instrument and T . Neither of the first-stage specifications includes C, so if Z ⊥⊥ C | T then the
population counterparts of the reported coefficients should be equal to zero. The p-values of
F-tests of this null hypothesis are reported at the bottom of the table. Note that the p-value in the
second column would be identical if we had used the ĲIVE constructed instrument itself as
the outcome variable, rather than the corresponding fitted values. Stars denote ∗∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.1.
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7 Appendix

7.1 Proof of Theorem 1

Proof. For ease of notation, implicitly condition on the event X = x throughout. First, we will show
that under Assumptions 1, 2 and 3, E[Y (0)],E[Y (1)] must satisfy Inequalities 6, 7, 8 and 9 for all
z ∈ {0, . . . , k}. Let z ∈ {0, . . . , k}. Then we have

E[Y (0)] = E[D(z)Y (0)] + E[(1−D(z))Y (0)]

≥ E[(1−D(z))Y (0)]

= E[(1−D)Y | Z = z] by Assumption 1

E[Y (1)] = E[D(z)Y (1)] + E[(1−D(z))Y (1)]

≥ E[D(z)Y (1)] + E[(1−D(z))Y (0)] by Assumption 2

= E[DY | Z = z] + E[(1−D)Y | Z = z] by Assumption 1

= E[Y | Z = z]

E[Y (1)] = E[D(z)Y (1)] + E[(1−D(z))Y (1)]

≤ E[D(z)Y (1)] + E[(1−D(z))]

= E[DY | Z = z] + (1− E[D | Z = z]) by Assumption 1

This establishes Inequalities 6, 8 and 9. Establishing Inequality 7 requires applying Assumption 3. Let
d ∈ {0, 1}. Then we have

E[Uz(d) | D(z) = d] = E[E[Uz(d) | Sz, D(z) = d] | D(z) = d]

= E[E[Uz(d) | Sz] | D(z) = d] by Equation (1) of Assumption 3

≥ E[E[Uz(1− d) | Sz] | D(z) = d] by Equation (2) of Assumption 3

= E[Uz(1− d) | D(z) = d]

From this we arrive at the revealed preference inequalities, or obedience conditions, that summarize the
empirical content of Assumption 3. In particular,

E[Y (0)] = E[Uz(0)] by Equation (3) of Assumption 3

= E[D(z)]E[Uz(0) | D(z) = 1] + (1− E[D(z)])E[Uz(0) | D(z) = 0]

≤ E[D(z)]E[Uz(1) | D(z) = 1] + (1− E[D(z)])E[Uz(0) | D(z) = 0]

= E[Uz(D(z))]

= E[Y (D(z))− λz(x)D(z)]

= E[Y | Z = z]− λz(x)E[D | Z = z] by Assumption 1

and similarly

E[Y (1)]− λz(x) = E[Uz(1)] by Equation (3) of Assumption 3

= E[D(z)]E[Uz(1) | D(z) = 1] + (1− E[D(z)])E[Uz(1) | D(z) = 0]

≤ E[D(z)]E[Uz(1) | D(z) = 1] + (1− E[D(z)])E[Uz(0) | D(z) = 0]

= E[Y | Z = z]− λz(x)E[D | Z = z] by Assumption 1
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These correspond to Inequalities 4 and 5 in the main text. Multiply Inequality 4 by (1− E[D | Z = z])

and Inequality 5 by E[D | Z = z] to get

(1− E[D | Z = z])E[Y (0)] ≤ (1− E[D | Z = z])E[Y | Z = z]

− λz(x)E[D | Z = z](1− E[D | Z = z])

E[D | Z = z]E[Y (1)] ≤ E[D | Z = z]E[Y | Z = z]

+ λz(x)E[D | Z = z](1− E[D | Z = z])

Adding the resulting inequalities together establishes Inequality 7

E[Y (0)] ≤ E[Y | Z = z]− E[D | Z = z]E[Y (1)− Y (0)]

This completes the first part of the proof: since our choice of z was arbitrary, E[Y (0)],E[Y (1)] must lie
in the identified set Y(x). It remains to show that the identified set is sharp.

For any y0, y1 ∈ Y(x), we will construct a joint distribution of counterfactual outcomes, counterfactual
treatments, and judge assignment Ỹ (0), Ỹ (1), D̃(0), . . . , D̃(k), Z̃ along with signals {S̃z}kz=0 and
preference parameters {λ̃z(x)}kz=0 such that

1. Conditional average counterfactuals E[Ỹ (0)],E[Ỹ (1)] are given by y0, y1

2. Assumptions 1, 2 and 3 hold

3. The resulting distribution Ỹ , D̃, Z̃ matches the distribution of observables Y,D,Z

Let Z̃ d
= Z with

Ỹ (0), Ỹ (1), D̃(0), . . . , D̃(k) ⊥⊥ Z̃

so Assumption 1 holds. Without loss of generality, let D̃(0), . . . , D̃(k) be mutually independent given
Ỹ (0), Ỹ (1). For all z ∈ {0, . . . , k}, let the joint distribution of Ỹ (0), Ỹ (1), D̃(z) be given by

Pr(Ỹ (0) = 0, Ỹ (1) = 0, D̃(z) = 0) = 1− E[D(1− Y ) | Z = z]− y1

Pr(Ỹ (0) = 0, Ỹ (1) = 0, D̃(z) = 1) = E[D(1− Y ) | Z = z]

Pr(Ỹ (0) = 0, Ỹ (1) = 1, D̃(z) = 0) = y1 − E[Y | Z = z]

Pr(Ỹ (0) = 0, Ỹ (1) = 1, D̃(z) = 1) = E[Y | Z = z]− y0

Pr(Ỹ (0) = 1, Ỹ (1) = 0, D̃(z) = 0) = 0

Pr(Ỹ (0) = 1, Ỹ (1) = 0, D̃(z) = 1) = 0

Pr(Ỹ (0) = 1, Ỹ (1) = 1, D̃(z) = 0) = E[(1−D)Y | Z = z]

Pr(Ỹ (0) = 1, Ỹ (1) = 1, D̃(z) = 1) = y0 − E[(1−D)Y | Z = z]

so Assumption 2 holds, conditional average counterfactuals are given by y0, y1, and Ỹ , D̃, Z̃ d
= Y,D,Z.

Since y0, y1 ∈ Y(x) by assumption, all of the above probabilities are in [0, 1]. All that remains is to show
that Assumption 3 holds. For all z ∈ {0, . . . , k}, let S̃z = D̃(z) and let

λ̃z(x) ∈


[y1 − y0,∞] if E[D | Z = z] = 0[
y1−E[Y |Z=z]
1−E[D|Z=z] ,

E[Y |Z=z]−y0
E[D|Z=z]

]
if E[D | Z = z] ∈ (0, 1)

[−∞, y1 − y0] if E[D | Z = z] = 1
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where the above intervals are non-empty since y0, y1 ∈ Y(x) by assumption so Inequality 7 must hold.
Equation (1) of Assumption 3 must hold since D̃(z) is a degenerate random variable conditional on S̃z .
Equation (2) of Assumption 3 must hold with probability one since

Pr(D̃(z) ∈ argmax
d∈{0,1}

E[Ũz(d) | S̃z])

= Pr(D̃(z) = 0)Pr(D̃(z) ∈ argmax
d∈{0,1}

E[Ũz(d) | S̃z] | D̃(z) = 0)

+ Pr(D̃(z) = 1)Pr(D̃(z) ∈ argmax
d∈{0,1}

E[Ũz(d) | S̃z] | D̃(z) = 1)

= (1− E[D | Z = z])1{E[Ũz(0) | D̃(z) = 0] ≥ E[Ũz(1) | D̃(z) = 0]}

+ E[D | Z = z]1{E[Ũz(1) | D̃(z) = 1] ≥ E[Ũz(0) | D̃(z) = 1]}

If E[D | Z = z] = 0, the first of the above indicators is equal to one since Pr(D̃(z) = 0) = 1 and

E[Ũz(0)] ≥ E[Ũz(1)]

⇐⇒ E[Ỹ (0)] ≥ E[Ỹ (1)− λ̃z(x)] by Equation (3) of Assumption 3

⇐⇒ λ̃z(x) ≥ y1 − y0

which holds by definition of λ̃z(x). If E[D | Z = z] = 1, the second of the above indicators is equal to
one since Pr(D̃(z) = 1) = 1 and

E[Ũz(0)] ≤ E[Ũz(1)]

⇐⇒ E[Ỹ (0)] ≤ E[Ỹ (1)− λ̃z(x)] by Equation (3) of Assumption 3

⇐⇒ λ̃z(x) ≤ y1 − y0

which holds by definition of λ̃z(x). Finally, if E[D | Z = z] ∈ (0, 1), both of the above indicators are
equal to one since

E[Ũz(0) | D̃(z) = 0] ≥ E[Ũz(1) | D̃(z) = 0]

⇐⇒ λ̃z(x) ≥ E[Ỹ (1)− Ỹ (0) | D̃(z) = 0] by Equation (3) of Assumption 3

⇐⇒ λ̃z(x) ≥
y1 − E[Y | Z = z]

1− E[D | Z = z]

and similarly

E[Ũz(0) | D̃(z) = 1] ≤ E[Ũz(1) | D̃(z) = 1]

⇐⇒ λ̃z(x) ≤ E[Ỹ (1)− Ỹ (0) | D̃(z) = 1] by Equation (3) of Assumption 3

⇐⇒ λ̃z(x) ≤
E[Y | Z = z]− y0

E[D | Z = z]

both of which hold by definition of λ̃z(x).
In summary, we have shown that under Assumptions 1, 2 and 3, the sharp identified set for conditional

average counterfactuals E[Y (0)],E[Y (1)] is given by Y(x). This set is defined as an intersection of
convex polygons on [0, 1]× [0, 1], and is therefore also a convex polygon on [0, 1]× [0, 1].

The final part of the proof involves showing that the proposed bounds on conditional average treatment
effects correspond to the optimized objectives of the corresponding linear programs. This is a bit tedious,
so I have omitted it from the current draft.
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7.2 Proof of Corollary 1

Proof. Almost all of the work to establish Corollary 1 was done in the proof of Theorem 1. First, for any
pair y0, y1 ∈ Y(x), consider the sharp identified set for λz(x) under Assumptions 1, 2 and 3, and the
additional assumption that E[Y (0) | X = x],E[Y (1) | X = x] = y0, y1. From the first part of the proof
of Theorem 1, we know that under these assumptions Inequalities 4 and 5 must hold

y0 ≤ E[Y | X = x, Z = z]− λz(x)E[D | X = x, Z = z]

y1 − λz(x) ≤ E[Y | X = x, Z = z]− λz(x)E[D | X = x, Z = z]

which can alternatively be expressed as λz(x) ∈ Lz(x; y0, y1) where

Lz(x; y0, y1) :=


[y1 − y0,∞] if E[D | X = x, Z = z] = 0[
y1−E[Y |X=x,Z=z]
1−E[D|X=x,Z=z] ,

E[Y |X=x,Z=z]−y0
E[D|X=x,Z=z]

]
if E[D | X = x, Z = z] ∈ (0, 1)

[−∞, y1 − y0] if E[D | X = x, Z = z] = 1

But then sharpness follows immediately from the fact that this is exactly the same set considered in the
second part of the proof of Theorem 1. We arrive at the sharp identified set for λz(x) under Assumptions 1,
2 and 3 by taking a union of the sets Lz(x; y0, y1) over Y(x).

7.3 Proof of Lemma 1

Proof. Notice that the assumptions of Theorem 1 are a special case of the assumptions of Lemma 1 in which
beliefs are accurate. So, if we can show thatY(x) is an identified set for conditional average counterfactuals
under the assumptions of Lemma 1, it must be the sharp identified set. Consider the relationship between
Ez[Y (1)− Y (0) | X = x, Sz] and E[Y (1)− Y (0) | X = x, Sz]. Under Assumption 3′, we have

Ez[Y (1)− Y (0) | X = x, Sz] = Pz(Y (0) = 0, Y (1) = 1 | X = x, Sz) by Assumption 2

=
π01z (x)f01z (Sz | x)

π00z (x)f00z (Sz | x) + π01z (x)f01z (Sz | x) + π11z (x)f11z (Sz | x)

and similarly

E[Y (1)− Y (0) | X = x, Sz] =
π01(x)f01z (Sz | x)

π00(x)f00z (Sz | x) + π01(x)f01z (Sz | x) + π11(x)f11z (Sz | x)

Some algebraic manipulation yields

E[Y (1)− Y (0) | X = x, Sz] =
1

1 +R 1−π01(x)
π01(x)

π01
z (x)

1−π01
z (x)

1−Ez [Y (1)−Y (0)|X=x,Sz ]
Ez [Y (1)−Y (0)|X=x,Sz ]

R :=

π00(x)f00
z (Sz |x)+π11(x)f11

z (Sz |x)
π00(x)+π11(x)

π00
z (x)f00

z (Sz |x)+π11
z (x)f11

z (Sz |x)
π00
z (x)+π11

z (x)

The key idea of the proof is that under the additional assumption of Lemma 1, R = 1 with probability one.
In this case, E[Y (1)−Y (0) | X = x, Sz] is a strictly increasing function of Ez[Y (1)−Y (0) | X = x, Sz]

on [0, 1] given by
g(y;π01(x), π01z (x)) =

1

1 + 1−π01(x)
π01(x)

π01
z (x)

1−π01
z (x)

1−y
y
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Conditional on X = x, Assumption 3′ holds if and only if Y (0), Y (1) ⊥⊥ D(z) | X = x, Sz and

D(z)


= 0 if Ez[Y (1)− Y (0) | X = x, Sz] < λz(x)

∈ {0, 1} if Ez[Y (1)− Y (0) | X = x, Sz] = λz(x)

= 1 if Ez[Y (1)− Y (0) | X = x, Sz] > λz(x)

But this is equivalent to

D(z)


= 0 if E[Y (1)− Y (0) | X = x, Sz] < g(λz(x);π

01(x), π01z (x))

∈ {0, 1} if E[Y (1)− Y (0) | X = x, Sz] = g(λz(x);π
01(x), π01z (x))

= 1 if E[Y (1)− Y (0) | X = x, Sz] > g(λz(x);π
01(x), π01z (x))

So, under the additional assumption of Lemma 1, Assumption 3′ is equivalent to Assumption 3 with
preference parameters given by {g(λz(x);π01(x), π01z (x))}kz=0. We may apply the first part of the proof
of Theorem 1 to conclude that Y(x) is an identified set for conditional average counterfactuals. As
previously discussed, sharpness follows immediately.

This proof is a bit sloppy, since it does not consider the possibility that π01(x) or π01z (x) are equal
to zero or one, that λz(x) is outside of [0, 1], or that the densities {f00z , f01z , f11z } are not well-defined.
I hope to fix this in a future draft. It is also worth noting that, under the assumptions of Lemma 1,
Corollary 1 yields the sharp identified set for g(λz(x);π01(x), π01z (x)), rather than λz(x). It is not
possible to distinguish preferences λz(x) from beliefs π01z (x); in the case of an interior solution, the
sharp identified set for λz(x) is (0, 1). I hope to flesh out this idea, which is closely related to Rambachan
(2024), in a future draft.

7.4 Proof of Lemma 2

Proof. Notice that the assumptions of Theorem 1 are a special case of the assumptions of Lemma 2 in
which taste shocks are degenerate and equal to zero. So, if we can show that Y(x) is an identified set for
conditional average counterfactuals under the assumptions of Lemma 2, it must be the sharp identified set.
Since Inequalities 6, 8 and 9 must hold regardless of our behavioral model, all that remains is to establish
Inequality 7. Let z ∈ {0, . . . , k}. If E[D | X = x, Z = z] = 0, then Inequality 7 holds trivially since
E[Y | X = x, Z = z] = E[Y (0) | X = x] by Assumption 1. Now, suppose E[D | X = x, Z = z] > 0.
Then by Assumption 1, we have

ATTz(x) = E[Y (1)− Y (0) | X = x,D(z) = 1] =
E[Y | X = x, Z = z]− E[Y (0) | X = x]

E[D | X = x, Z = z]

so Inequality 7 is equivalent to ATTz(x) ≥ ATE(x). For ease of notation, define

δz := εz(0)− εz(1)

Vz := E[Y (1)− Y (0) | X = x, Sz]

Then by Assumption 3′′, conditional on X = x we have

D(z)


= 0 if Vz < λz(x) + δz

∈ {0, 1} if Vz = λz(x) + δz

= 1 if Vz > λz(x) + δz
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To avoid technical issues arising from tie-breaking, suppose D(z) = 1{Vz ≥ λz(x) + δz}; this is
something I hope to fix in a future draft. Then we have

ATTz(x) = E[Y (1)− Y (0) | X = x,D(z) = 1]

= E[Y (1)− Y (0) | X = x, Vz ≥ λz(x) + δz]

= E[E[Y (1)− Y (0) | X = x, Vz, δz] | X = x, Vz ≥ λz(x) + δz]

= E[E[Y (1)− Y (0) | X = x, Vz] | X = x, Vz ≥ λz(x) + δz]

= E[Vz | X = x, Vz ≥ λz(x) + δz]

In addition, we have Vz ⊥⊥ λz(x) + δz | X = x. Finally, we have

ATE(x) = E[Y (1)− Y (0) | X = x] = E[Vz | X = x]

The desired result follows from the fact that for any two independent scalar random variables A and B,
E[A | A ≥ B] ≥ E[A].
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